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Carcinoma of unknown primary, wherein metastatic disease is present without an identifiable primary site,
accounts for ~ 3–5% of all cancer diagnoses. Despite the development of multiple diagnostic workups, the
success rate of primary site identification remains low. Determining the origin of tumor tissue is, thus, an
important clinical application of molecular diagnostics. Previous studies have paved the way for gene
expression-based tumor type classification. In this study, we have established a comprehensive database
integrating microarray- and sequencing-based gene expression profiles of 16 674 tumor samples covering 22
common human tumor types. From this pan-cancer transcriptome database, we identified a 154-gene expression
signature that discriminated the origin of tumor tissue with an overall leave-one-out cross-validation accuracy of
96.5%. The 154-gene expression signature was first validated on an independent test set consisting of 9626
primary tumors, of which 97.1% of cases were correctly classified. Furthermore, we tested the signature on a
spectrum of diagnostically challenging tumors. An overall accuracy of 92% was achieved on the 1248 tumor
specimens that were poorly differentiated, undifferentiated or from metastatic tumors. Thus, we have identified a
154-gene expression signature that can accurately classify a broad spectrum of tumor types. This gene panel
may hold a promise to be a useful additional tool for the determination of the tumor origin.
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Cancer of unknown primary, also known as occult
primary tumors, is a heterogeneous group of tumors
whose primary site cannot be found when the cancer
has metastasized.1 Per 100 000 individuals, the
incidence varies from 5 to 7 cases in Europe, 7 to
12 cases in the USA, and 18 to 19 cases in Australia.2

The latest data show that cancer of unknown primary
accounts for ~ 3–5% of all newly diagnosed cancers,2

and it is the fourth leading cause of cancer-related
death worldwide.3,4 Generally, the prognosis of
patients with carcinoma of unknown primary site is
poor for those receiving empiric chemotherapy. The
median survival period is 3–9 months, even when

newer combination treatment regiments are
administered.5 Hence, cancer of unknown primary
remains an important clinical problem that generates
frustration among surgeons, oncologists, and pathol-
ogists, in addition to the uncertainty and stress it
imposes on patients. Identification of the primary site
can ease the patient’s anxiety and improve long-term
survival with the help of more specific therapy.2,6

In current clinical practice, patients with carci-
noma of unknown primary should inform doctors of
their medical history and receive detailed physical
examination, laboratory testing, digital imaging, and
endoscopic examination. Positron emission tomo-
graphy–computed tomography, the most efficient
imaging test to depict the tumor tissue of origin, can
only detect 24–53% of primary lesions of cancer of
unknown origin.7 Histological examination, particu-
larly immunohistochemistry, is the cornerstone to
identify the tumor of origin. However, even with the
best experts and the most advanced technology, the
primary site can be identified in only 20–30% of
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patients with cancer of unknown primary,8 and the
results can be subjective.

This clinical need has resulted in a quest for better
and more accurate identification of the primary site
of tumors. To address this need, several studies have
demonstrated that the expression levels of tens to
hundreds of genes can be used as a ‘molecular
fingerprint’ to classify a multitude of tumor types.
Varadhachary et al9 and Talantov et al10 presented a
reverse transcription polymerase chain reaction-
based method that measures the expression of 10
signature genes among six tumor types. Ma et al11
developed a similar method based on 92 genes to
classify 32 tumor types. Tothill et al12 reported a
79-gene panel to discriminate among 13 tumor types.
Instead of measuring conventional gene expression,
Rosenfeld et al13 analyzed microRNA expression to
classify tumor samples.

With the rapid evolution of microarray technology
over the last decade, there have been tremendous
efforts invested in the field of cancer research using
standardized genome-wide microarrays. Considering
the large amount of high-quality, publicly available
gene expression data sets, the integrative analysis of
genomic data, in which data from multiple studies
are combined to increase the sample size and avoid
laboratory-specific bias, has the potential to yield
new biological insights that are not possible from a
single study.14

In the present study, we established a comprehen-
sive gene expression database containing the
genome-wide expression profiles of more than
16 000 tumor samples representing 22 common
human cancer types. By using an innovative analy-
tical method, we aimed to develop a gene expression
signature to aid in the identification of tumor origin.

Materials and methods

Sample Collection and Data Curation

The gene expression data sets of 16 674 tumor
samples with histologically confirmed origins were
collected from public data repositories (eg, ArrayEx-
press, Gene Expression Omnibus, and The Cancer
Genome Atlas Data Portal) and curated to form a
comprehensive pan-cancer transcriptome database.

Array-based gene expression profiling of 7048
tumor samples was mainly conducted on three
different platforms of Affymetrix oligonucleotide
microarray: GeneChip Human Genome U133A
Array, U133A 2.0 Array, and U133 Plus 2.0 Array.
Data from raw CEL files were pre-processed using
the single-channel array normalization method with
default parameters. Although different opinions exist
concerning data pre-processing, the single-channel
array normalization method was considered as most
suitable for personalized-medicine workflows.
Rather than processing microarray samples as
groups, which can introduce biases and present

logistical challenges, the single-channel array nor-
malization method can normalize each sample
individually by modeling and removing probe- and
array-specific background noise using only internal
array data.15 We further used the alternative CDF
files from BrainArray Resource (http://brainarray.
mbni.med.umich.edu/) to summarize the probe level
intensities directly to the Entrez gene IDs. Probes
mapping to multiple genes and other problems
associated with old generations of Affymetrix probe
designs were thereby excluded.16

Sequencing-based gene expression profiling of
9626 tumor samples were generated on the Illumina
HiSeq 2000 RNA sequencing platform and kindly
provided by The Cancer Genome Atlas pan-cancer
analysis working group at Synapse website (https://
www.synapse.org/).17 The gene expression profile
consists of transcriptomic data for 20 501 unique
genes. The clinical information for selected samples
was retrieved from the ‘Clinical Biotab’ section of the
data matrix based on the Biospecimen Core Resource
IDs of the patients.

Gene Signature Identification

Gene expression data analysis was performed using
R software and packages from the Bioconductor
project.18–20 To identify a gene expression signature,
we used the support vector machine—recursive
feature elimination algorithm for feature selection
and classification modeling.21 For multi-class classi-
fication, a one-versus-all approach was used
whereby multiple binary classifiers are first derived
for each tumor type. The results are reported as a
series of probability scores for each of the 22 tumor
types. The probability score was estimated as an
indicator of the certainty of a classification made by
the gene expression signature. The probability score
ranges from 0 (low certainty) to 100 (high certainty)
and sum to 100 across the 22 primary tumor types. A
threshold of probability score equal to 50 was
established to indicate the confidence of a single
classification. When the probability score fell below
50, the samples were considered ‘unclassifiable
cases’. When the probability score was above 50,
the tumor type with the highest probability score was
considered the tumor of origin. An example of gene
expression signature classification is shown in the
Supplementary Figure 1.

Signature Performance Assessment

For each specimen, the predicted primary site of the
tumor was compared with the reference diagnosis. A
true-positive result was indicated when the predicted
tumor type matched the reference diagnosis. When
the predicted tumor type and reference diagnosis did
not match, the specimen was considered a false
positive. For each tissue on the panel, sensitivity was
defined as the ratio of true-positive results to the total
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positive samples analyzed, while specificity was
defined as the ratio (1− false positive)/(total tested−
total positive). The diagnostic odds ratio was
calculated as a combination of the sensitivity and
specificity as described by Glas et al.22

Results

Establishment of Pan-Cancer Transcriptome Database

To create a cancer transcriptome database for tumor
primary site identification, the following issues were
primarily considered. First, our database should
span the tumor sites to be as large as possible.
Second, within each tumor type, all possible histo-
logical subtypes should be covered. In addition, to
mimic the performance of the candidate gene
expression signature to identify the tumor origin in
carcinoma of unknown primary, metastatic cancers,
poorly differentiated tumors, and undifferentiated
tumors should also be included. Thus, a systematic
search of major biological data repositories—eg,
ArrayExpress, Gene Expression Omnibus, and The
Cancer Genome Atlas project—was performed to
collect the gene expression profiling data sets of
different tumor types.

Overall, we accumulated the gene expression
profiles of 16 674 tumor samples to form a compre-
hensive pan-cancer transcriptome database. The
carcinomas originated from 22 major tissue types,
including adrenal gland, brain, breast, cervix, color-
ectal, endometrium, gastroesophagus, head and
neck, kidney, liver, lung, lymphoma, melanoma,
mesothelioma, neuroendocrine, ovary, pancreas,
prostate, sarcoma, testis, thyroid, and urinary. The
database also contains patient demographic data and
clinical information. To identify a reliable gene
expression signature, we adopted a training-
validation approach in this study. First, the gene
expression profiles of 5800 primary tumors with
histologically confirmed origins were retrieved from
the database and curated to form a large training set.
Next, two independent validation sets were formed:
one is composed of sequencing-based gene expres-
sion profiles of 9626 tumor specimens with histolo-
gically confirmed origins (test set 1) and the other is
composed of gene expression profiles of 1248 tumor
specimens that were poorly differentiated, undiffer-
entiated or from metastatic tumors (test set 2).
Figure 1 depicts three different phases of our study
design and Table 1 summarizes the clinical char-
acteristics of the samples in the study.

Figure 1 Flow diagram of gene expression signature identification and performance evaluation.
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Gene Selection and Functional Annotation

The training set consisted of 5800 samples covering
more than 95% of solid tumors by incidence, with
55–542 specimens per tumor class that encompass a
range of intratumor heterogeneity. After data normal-
ization and annotation steps, a matrix of 12 000
unique genes in 5800 samples (≈70 million data
points) was prepared for downstream bioinformatics
analyses. Extracting a subset of informative genes
from such high-dimension genomic data is a critical
step for gene expression signature identification.
Although many algorithms have been developed, the
support vector machine—recursive feature elimina-
tion approach is considered one of the best gene
selection algorithms. For each tumor type, we used
the support vector machine—recursive feature elim-
ination approach to: (1) evaluate and rank the
contributions of each gene toward the optimal
separation of a specific cancer type from other tumor
types; (2) select the top 10-ranked genes as the most
differentially expressed genes for this tumor type;
and (3) repeat this process for each tumor types, and
obtain 22 lists of the top 10 gene set. After removing
redundant features, 154 unique genes were obtained.
Full list of the 154 candidate genes with respect to
each tumor types were provided in Table 2.

We further investigated whether these candidate
genes revealed biological features known to be
relevant to different cancers. Kyoto Encyclopedia of
Genes and Genomes pathway enrichment analysis
was performed using the GeneCodis bioinformatics
tool (http://genecodis.dacya.ucm.es/).23 As shown

in Table 3, a diverse group of gene families is
represented in the 154-gene list. The most signifi-
cantly enriched gene categories are those involved in
specific biological processes, including tyrosine
metabolism, fat digestion and absorption, cytokine–
cytokine receptor interaction, extracellular matrix–
receptor interaction, and gastric acid secretion. Even
more interestingly, genes described in oncogenic
pathways such as those of bladder cancer, mela-
noma, and prostate cancer were also significantly
overrepresented, reflecting their differential involve-
ment in a range of tumor classes.

Leave-One-Out Internal Cross-Validation

As an initial step, we assessed the performance of the
classifier using leave-one-out cross-validation within
the training set. Leave-one-out cross-validation simu-
lates the performance of a classification algorithm on
unseen samples. With leave-one-out cross-validation,
the algorithm is repeatedly retrained, leaving out one
sample in each round and testing each sample on a
classifier that was trained without this sample. The
154-gene expression signature showed an overall
accuracy of 96.5% (5597 of 5800; 95% CI 96.0 to
97.0%) with notable variation between different
cancer types. Sensitivities ranged from 89.7% (endo-
metrium) to 100% (neuroendocrine). Using this
internal validation of the training set, these data
provide a preliminary estimate of classification
performance.

Independent Validation in Primary Tumors Profiled
with Next-Generation Sequencing

The final classification model of the 154-gene
expression signature was established using the entire
training set and then applied to an independent
validation set comprising 9626 primary tumor
samples profiled with next-generation sequencing
(test set 1). Representation from 22 sites ranged from
48 (lymphoma) to 1218 (breast). The 154-gene
expression signature estimated 9100 (94.5%) of
9626 samples with probability scores above 50 as
‘valid classification’. Among these 9100 valid cases,
the 154-gene expression signature showed 97.1%
overall agreement with the reference diagnosis (8839
of 9100; 95% CI 96.8 to 97.5%). Figure 2 shows a
matrix of the relationship of the test results com-
pared with the reference diagnoses. Sensitivities for
the 22 main cancer types ranged from 84.2%
(gastroesophagus) to 100% (prostate). Specificities
ranged from 99.4% (gastroesophagus) to 100%
(mesothelioma, neuroendocrine and thyroid). The
detailed sensitivity and specificity are listed in
Table 4. A total of 526 cases (5.5%) were considered
‘unclassifiable’ by the 154-gene expression signature,
with probability scores below 50. Cervix, urinary,
sarcoma, head and neck, gastroesophagus, and
endometrium were the most common biopsy sites

Table 1 Summary of sample information

Training set Test set 1 Test set 2

Cancer type n % n % n %

Adrenal 55 0.95 79 0.82 44 3.53
Brain 446 7.69 708 7.36 26 2.08
Breast 542 9.34 1218 12.65 142 11.38
Cervix 113 1.95 310 3.22 19 1.52
Colorectal 439 7.57 434 4.51 96 7.69
Endometrium 262 4.52 201 2.09 15 1.2
Gastroesophagus 530 9.14 196 2.04 19 1.52
Head and neck 254 4.38 566 5.88 34 2.72
Kidney 256 4.41 1020 10.6 55 4.41
Liver 222 3.83 469 4.87 34 2.72
Lung 285 4.91 1130 11.74 190 15.22
Lymphoma 366 6.31 48 0.5 30 2.4
Melanoma 163 2.81 554 5.76 72 5.77
Mesothelioma 100 1.72 87 0.9 40 3.21
Neuroendocrine 209 3.6 187 1.94 22 1.76
Ovary 225 3.88 266 2.76 87 6.97
Pancreas 134 2.31 183 1.9 24 1.92
Prostate 458 7.9 550 5.71 41 3.29
Sarcoma 169 2.91 265 2.75 216 17.31
Testis 136 2.34 156 1.62 17 1.36
Thyroid 238 4.1 572 5.94 12 0.96
Urinary 198 3.41 427 4.44 13 1.04
Total 5800 100 9626 100 1248 100
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Table 2 List of selected 154 candidate genes and related tumor types

Gene symbol Description Related tumor type

ACPP Acid phosphatase, prostate Liver and prostate
ACTC1 Actin, alpha, cardiac muscle 1 Urinary
ACTG2 Actin, gamma 2, smooth muscle, enteric Gastroesophagus, mesothelioma, and

urinary
AGR2 Anterior gradient 2, protein disulfide isomerase family member Ovary
ALDH1A2 Aldehyde dehydrogenase 1 family member A2 Mesothelioma
APOBEC3B Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like

3B
Adrenal

APOD Apolipoprotein D Pancreas
ASPN Asporin Head and neck
ATP1B1 ATPase, Na+/K+ transporting, beta 1 polypeptide Kidney and urinary
AZGP1 Alpha-2-glycoprotein 1, zinc-binding Breast
C4BPA Complement component 4-binding protein, alpha Lung
C7 Complement component 7 Ovary
CA12 Carbonic anhydrase XII Kidney
CALB2 Calbindin 2 Mesothelioma
CARTPT CART prepropeptide Neuroendocrine
CCL18 Chemokine (C-C motif) ligand 18 Lymphoma
CDH1 Cadherin 1, type 1 Sarcoma
CDH17 Cadherin 17, LI cadherin (liver–intestine) Colorectal
CEACAM5 Carcinoembryonic antigen-related cell adhesion molecule 5 Breast, colorectal, and endometrium
CEACAM6 Carcinoembryonic antigen-related cell adhesion molecule 6 (non-

specific Cross-reacting antigen)
Lung and urinary

CHGA Chromogranin A Neuroendocrine
CHGB Chromogranin B Neuroendocrine and pancreas
CHI3L1 Chitinase 3-like-1 Brain, sarcoma, and urinary
CHRNA3 Cholinergic receptor, nicotinic alpha 3 Neuroendocrine
CKB Creatine kinase, brain Liver
CLDN11 Claudin 11 Ovary
CLDN18 Claudin 18 Gastroesophagus
CLU Clusterin Brain
COL11A1 Collagen, type XI, alpha-1 Brain and endometrium
CPB1 Carboxypeptidase B1 Adrenal and pancreas
CXCL14 Chemokine (C-X-C motif) ligand 14 Liver
CXCL5 Chemokine (C-X-C motif) ligand 5 Liver and pancreas
CYP17A1 Cytochrome P450 family 17 subfamily A member 1 Adrenal
DBH Dopamine beta-hydroxylase (dopamine beta-monooxygenase) Neuroendocrine
DCT Dopachrome tautomerase Melanoma
DDX3Y DEAD (Asp-Glu-Ala-Asp) box helicase 3, Y-linked Cervix and testis
DLK1 Delta-like 1 homolog (Drosophila) Neuroendocrine and testis
DMBT1 Deleted in malignant brain tumors 1 Lymphoma
EFEMP1 EGF-containing fibulin-like extracellular matrix protein 1 Mesothelioma
EGFL6 EGF-like-domain, multiple 6 Lung
EGFR Epidermal growth factor receptor Lung
EPCAM Epithelial cell adhesion molecule Colorectal, liver, lymphoma, and

mesothelioma
ESR1 Estrogen receptor 1 Endometrium
FABP1 Fatty acid-binding protein 1, liver Colorectal
FABP4 Fatty acid-binding protein 4, adipocyte Breast and lung
FAM107A Family with sequence similarity 107 member A Brain
FOXE1 Forkhead box E1 Thyroid
GATA3 GATA-binding protein 3 Breast and colorectal
GCG Glucagon Pancreas
GFAP Glial fibrillary acidic protein Brain
GJA1 Gap junction protein alpha-1 Cervix
GPM6B Glycoprotein M6B Brain and melanoma
GPX3 Glutathione peroxidase 3 Thyroid
GREM1 Gremlin 1, DAN family BMP antagonist Gastroesophagus
HBB Hemoglobin subunit beta Brain and sarcoma
HLA-DQA1 Major histocompatibility complex, class II, DQ alpha-1 Cervix, lymphoma, mesothelioma,

sarcoma, and testis
ID4 Inhibitor of DNA binding 4, dominant-negative helix-loop-helix

protein
Thyroid

IGFBP2 Insulin-like growth factor binding protein 2 Brain
IGFBP7 Insulin-like growth factor binding protein 7 Kidney
IGJ Joining chain of multimeric IgA and IgM Lung
INSM1 Insulinoma-associated 1 Neuroendocrine
ISL1 ISL LIM homeobox 1 Neuroendocrine
KCNJ16 Potassium channel, inwardly rectifying subfamily J, member 16 Kidney and thyroid
KLK2 Kallikrein-related peptidase 2 Prostate
KLK3 Kallikrein-related peptidase 3 Liver, prostate, and testis
KRT1 Keratin 1, type II Melanoma
KRT13 Keratin 13, type I Head and neck, melanoma, and urinary
KRT14 Keratin 14, type I Breast
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Table 2 (Continued )

Gene symbol Description Related tumor type

KRT15 Keratin 15, type I Head and neck
KRT19 Keratin 19, type I Adrenal, head and neck, lymphoma,

mesothelioma, and urinary
KRT20 Keratin 20, type I Colorectal
KRT4 Keratin 4, type II Head and neck
KRT7 Keratin 7, type II Head and neck
L1TD1 LINE-1 type transposase domain containing 1 Testis
LGALS4 Lectin, galactoside-binding, soluble, 4 Colorectal
LIPF Lipase, gastric Gastroesophagus
LUM Lumican Endometrium and ovary
MAB21L2 Mab-21-like 2 (C. elegans) Gastroesophagus
MGP Matrix Gla protein Endometrium and ovary
MITF Microphthalmia-associated transcription factor Melanoma
MLANA Melan-A Melanoma
MMP1 Matrix metallopeptidase 1 Head and neck
MMP12 Matrix metallopeptidase 12 Endometrium and ovary
MMP3 Matrix metallopeptidase 3 Head and neck
MS4A1 Membrane-spanning 4-domains, subfamily A, member 1 Lymphoma
MSLN Mesothelin Mesothelioma
MSMB Microseminoprotein-beta Prostate
MSX1 Msh homeobox 1 Endometrium
MT3 Metallothionein 3 Adrenal
NKX2-1 NK2 homeobox 1 Thyroid
NKX3-1 NK3 homeobox 1 Prostate
NPTX2 Neuronal pentraxin II Adrenal
NPY1R Neuropeptide Y receptor Y1 Kidney
OGN Osteoglycin Sarcoma
OR51E2 Olfactory receptor family 51 subfamily E member 2 Prostate
PAPPA Pregnancy-associated plasma protein A, pappalysin 1 Sarcoma
PAX3 Paired box 3 Melanoma
PCDH7 Protocadherin 7 Ovary
PCP4 Purkinje cell protein 4 Prostate
PEG3 Paternally expressed 3 Ovary and testis
PHOX2B Paired-like homeobox 2b Neuroendocrine
PI15 Peptidase inhibitor 15 Lymphoma
PIGR Polymeric immunoglobulin receptor Gastroesophagus
PIP Prolactin-induced protein Breast
PLA2G2A Phospholipase A2 group IIA Liver and prostate
POSTN Periostin, osteoblast-specific factor Thyroid
POU3F3 POU class 3 homeobox 3 Kidney
PRRX1 Paired-related homeobox 1 Endometrium
PTGDS Prostaglandin D2 synthase Liver
PTN Pleiotrophin Brain and sarcoma
PTX3 Pentraxin 3 Sarcoma
RGS4 Regulator of G-protein signaling 4 Cervix
RPS11 Ribosomal protein S11 Testis
RPS4Y1 Ribosomal protein S4, Y-linked 1 Cervix, head and neck, kidney, ovary,

prostate, and testis
S100A2 S100 calcium-binding protein A2 Urinary
S100A8 S100 calcium-binding protein A8 Cervix, lymphoma, mesothelioma, and

sarcoma
S100P S100 calcium-binding protein P Urinary
SCG5 Secretogranin V Pancreas
SCGB1A1 Secretoglobin, family 1A, member 1 (uteroglobin) Lung
SCGB2A2 Secretoglobin, family 2A, member 2 Breast
SERPINA3 Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase,

antitrypsin), member 3
Brain, breast, liver, and mesothelioma

SERPINA5 Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase,
antitrypsin), member 5

Adrenal

SERPINB3 Serpin peptidase inhibitor, clade B (ovalbumin), member 3 Cervix
SERPINB4 Serpin peptidase inhibitor, clade B (ovalbumin), member 4 Cervix
SFN Stratifin Sarcoma
SFRP1 Secreted frizzled-related protein 1 Cervix
SFTPB Surfactant protein B Lung
SFTPC Surfactant protein C Lung
SFTPD Surfactant protein D Lung
SLC26A3 Solute carrier family 26 (anion exchanger), member 3 Colorectal
SLC26A4 Solute carrier family 26 (anion exchanger), member 4 Thyroid
SLC2A3 Solute carrier family 2 (facilitated glucose transporter), member 3 Testis
SLC3A1 Solute carrier family 3 (amino acid transporter heavy chain), member 1 Kidney
SPINK1 Serine peptidase inhibitor, Kazal type 1 Gastroesophagus and pancreas
SPP1 Secreted phosphoprotein 1 Kidney and lymphoma
SST Somatostatin Pancreas
STAR Steroidogenic acute regulatory protein Adrenal
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among those unclassifiable cases. Diagnostic odds
ratios for all the 22 tumor types were significantly
41, indicating that each class reported by the
154-gene expression signature provides significant
discrimination and performance.

Independent Validation in Metastatic and
Undifferentiated Tumors

The 154-gene expression signature was further
validated in the test set 2 comprising 1248 tumor
specimen samples. For the test set 2, we particularly
enriched for tumor metastatic specimens with
known primary sites or primary tumors with poor
differentiation because these probably reflect the
clinical circumstance of carcinoma of unknown
primary. Representation from 22 sites ranged from
12 (thyroid) to 216 (sarcoma). The 154-gene expres-
sion signature estimated 1077 (86.3%) of 1248
samples with probability scores above 50 as ‘valid
classification’. Among these 1077 valid cases, the
154-gene expression signature showed 92% overall
agreement with the reference diagnosis (991 of 1077;
95% CI 90.2 to 93.6%). Figure 3 shows a matrix of
the relationship of the test results compared with the
reference diagnoses. Sensitivities for the 22 main
tumor types ranged from 38.9% (pancreas) to 100%
(adrenal, brain, head and neck, liver, neuroendo-
crine, and testis). Specificities ranged from 98.0%
(lung) to 100% (adrenal, brain, cervix, mesothe-
lioma, neuroendocrine, pancreas, and prostate). The
detailed sensitivity and specificity are listed in
Table 4. One hundred seventy-one (13.7%) cases
were considered ‘unclassifiable’ by the 154-gene
expression signature, with probability scores below
50. Prostate, kidney, pancreas, urinary, adrenal, and
melanoma were the most common biopsy sites
among those unclassifiable cases. Diagnostic odds
ratios for all 22 tumor types were significantly 41.

Discussion

Owing to great advancements in high-throughput
microarray technologies and the comprehensive
efforts of systematic cancer genomics projects, we
were able to utilize large genomic data sets for our
study. We report here the creation of a pan-cancer
gene expression database from more than 160 000
human tumor samples and demonstrate that multi-
class tumor classification is feasible by comparing
an unknown sample to this reference database. The
154-gene expression signature demonstrated an
overall accuracy of 96.5% for 22 tumor types by
cross-validation of the training set, and 97.1% in an
independent test set of 9626 primary tumors profiled
with the next-generation sequencing. Furthermore,
we tested the signature on a spectrum of diagnosti-
cally challenging tumors. An overall accuracy of
92% was achieved on the 1248 tumor specimens that
were poorly differentiated, undifferentiated, or from
metastatic tumors.

Several investigations have reported multigene
algorithms and results that demonstrate the promise
of gene expression-based signatures in tumor origin
identification. Unlike many studies in which sam-
ples were often dominated by well-differentiated
primary cancers, our approach directly exploited
undifferentiated metastatic tumor samples for the
validation of our 154-gene expression signature. In a
clinical scenario, the uncertainty of tumors’ origin
usually arises within the context of metastatic and/or
poorly differentiated to undifferentiated malignan-
cies, and some of the previously published gene
expression-based signatures have shown decreased
performance with less-differentiated tumors. In this
study, we show that the 154-gene expression signa-
ture could reliably identify the tumor origin in 92%
of the 1077 tumor samples tested. This accuracy is
comparable to other gene expression-based signa-
tures with reported accuracies in the range of
79–91%.24–26 The performance of this test also

Table 2 (Continued )

Gene symbol Description Related tumor type

SULT2A1 Sulfotransferase family 2A member 1 Adrenal
TACSTD2 Tumor-associated calcium signal transducer 2 Colorectal, lymphoma, and urinary
TG Thyroglobulin Thyroid
TH Tyrosine hydroxylase Adrenal and neuroendocrine
THBS4 Thrombospondin 4 Gastroesophagus
TM4SF4 Transmembrane 4 L six family member 4 Liver and pancreas
TPO Thyroid peroxidase Thyroid
TRPM1 Transient receptor potential cation channel, subfamily M, member 1 Melanoma
TRPS1 Trichorhinophalangeal syndrome I Breast
TSHR Thyroid-stimulating hormone receptor Thyroid
TSPAN8 Tetraspanin 8 Breast, colorectal, and gastroesophagus
TSPYL5 TSPY-like 5 Endometrium
TTR Transthyretin Pancreas and testis
TYR Tyrosinase Melanoma
TYRP1 Tyrosinase-related protein 1 Melanoma
VEGFA Vascular endothelial growth factor A Kidney
XIST X-inactive-specific transcript (non-protein coding) Cervix, endometrium, gastroesophagus,

head and neck, ovary, and prostate
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compares favorably with current clinical practice
standards such as immunohistochemistry, which has
shown 75% accuracy in metastatic samples using
a predetermined panel of 10 antibodies.27

It is noteworthy that the expression patterns of
several genes among the 154-gene panel have been
observed previously by other methods to be rela-
tively tissue specific for certain types of carcinomas
—eg, KLK3 has been identified as the gene encoding

prostate-specific antigen, which has long been
known as an important tumor marker used in the
diagnosis and monitoring of prostate cancer. Origi-
nally, it was thought that prostate-specific antigen
was only produced by the cells of the prostate gland.
Recently, it has been shown that elevated levels of
prostate-specific antigen are also observed in some
breast and gynecologic cancers.28,29 In addition,
overexpression of the EGFR gene occurs across a

Table 3 The top Kyoto Encyclopedia of Genes and Genomes pathways enriched in the 154-gene list

Kyoto Encyclopedia of Genes and
Genomes pathways No. of genes P-value Genes

Tyrosine metabolism 6 2.10E−08 TYRP1, DCT, TYR, DBH, TH, and TPO
Bladder cancer 4 2.80E−05 EGFR, CDH1, VEGFA, and MMP1
Rheumatoid arthritis 5 3.89E−05 MMP3, CXCL5, HLA-DQA1, VEGFA, and MMP1
Autoimmune thyroid disease 4 4.97E−05 TG, HLA-DQA1, TPO, and TSHR
Protein digestion and absorption 4 4.24E−04 ATP1B1, SLC3A1, CPB1, and COL11A1
Pathways in cancer 7 6.68E−04 KLK3, NKX3-1, EGFR, MITF, CDH1, VEGFA, and MMP1
Fat digestion and absorption 3 8.86E−04 LIPF, FABP1, and PLA2G2A
Pancreatic secretion 4 1.00E−03 ATP1B1, CPB1, PLA2G2A, and SLC26A3
Melanogenesis 4 1.00E−03 TYRP1, MITF, DCT, and TYR
Cytokine–cytokine receptor interaction 6 1.13E−03 CXCL5, CCL18, CXCL14, EGFR, VEGFA, and TPO
Endocrine and other factor-regulated
calcium reabsorption

3 1.39E−03 ATP1B1, KLK2, and ESR1

Focal adhesion 5 1.98E−03 SPP1, EGFR, THBS4, VEGFA, and COL11A1
Cell adhesion molecules 4 2.45E−03 HLA-DQA1, CLDN11, CLDN18, and CDH1
Chemokine signaling pathway 3 2.74E−03 CXCL5, CCL18, and CXCL14
Complement and coagulation cascades 3 3.13E−03 C4BPA, SERPINA5, and C7
ECM–receptor interaction 3 3.13E−03 SPP1, THBS4, and COL11A1
Melanoma 3 3.55E−03 EGFR, MITF, and CDH1
PPAR signaling pathway 3 3.86E−03 FABP4, FABP1, and MMP1
Gastric acid secretion 3 4.18E−03 ATP1B1, KCNJ16, and SST
Prostate cancer 3 4.68E−03 KLK3, NKX3-1, and EGFR
Amoebiasis 3 1.09E−02 SERPINB3, SERPINB4, and COL11A1
Hepatitis C 3 2.20E−02 EGFR, CLDN11, and CLDN18
Phagosome 3 2.38E−02 THBS4, SFTPD, and HLA-DQA1

Figure 2 Confusion matrix by tumor type of the test set 1. Reference diagnoses are shown across the top row, and 154-gene expression
signature predictions are shown along the left-hand column. The matrix shows the direct relationship between each adjudicated reference
diagnosis versus the molecular classifier prediction, including reproducible patterns of classification and misclassification.
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wide range of different cancers, including brain,
colorectal, lung, esophageal, cervical cancers, and
sarcoma.30–35 CDH1 and VEGFA have been reported
among the highly significant markers in colorectal,
gastric, and liver cancers.36–41

The 154-gene expression signature shows clear
promise in identifying the tumor’s origin, but it is
not perfect. For diagnostically challenging tumors,
systematic errors were noted in the classes of

endometrial and pancreatic tumors (58 and 61%
misclassified, respectively). Among the seven mis-
classified endometrial cancers, five were predicted to
be ovarian cancer. Given the current controversies
over the ontogeny of female genital tract cancers,42–45
molecular profiling with the 154-gene expression
signature may reflect this biologic intersection and
provide additional insight into the origin of these
tumors. Among the 11 misclassified pancreatic

Table 4 Performance characteristics of the 154-gene expression signature in two test sets

Test set 1 Test set 2

Class n Sensitivity (%) Specificity (%) n Sensitivity (%) Specificity (%)

Adrenal 76 98.7 100 34 100 100
Brain 706 99.7 100 26 100 100
Breast 1197 99.7 99.9 141 97.9 99.6
Cervix 255 89.8 99.8 19 84.2 100
Colorectal 430 97.2 99.9 90 78.9 99.4
Endometrium 179 87.7 99.6 12 41.7 99.7
Gastroesophagus 171 84.2 99.4 16 68.8 98.8
Head and neck 492 91.3 99.6 31 100 99.7
Kidney 1010 99.2 100 40 75 99.7
Liver 455 99.6 100 34 100 98.6
Lung 1043 97.5 99.8 167 95.2 98
Lymphoma 48 95.8 99.9 24 95.8 99.7
Melanoma 502 96.2 100 57 91.2 99.9
Mesothelioma 83 96.4 100 38 97.4 100
Neuroendocrine 183 98.4 100 20 100 100
Ovary 263 98.5 99.7 72 94.4 99.1
Pancreas 168 93.5 100 18 38.9 100
Prostate 543 100 99.9 11 90.9 100
Sarcoma 223 90.6 99.7 191 98.4 99.7
Testis 145 99.3 100 15 100 99.9
Thyroid 572 99.8 100 11 63.6 99.9
Urinary 356 93.5 99.9 10 90 99.7
Overall 9100 95.8 99.9 1077 86.5 99.6

Figure 3 Confusion matrix by tumor type of the test set 2. Reference diagnoses are shown across the top row, and 154-gene expression
signature predictions are shown along the left-hand column. The matrix shows the direct relationship between each adjudicated reference
diagnosis versus the molecular classifier prediction, including reproducible patterns of classification and misclassification.
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cancers, six were predicted to have originated from
the gastroesophagus, and four from the liver. It is
known that pancreatic cancer has a complex and
heterogeneous genetic base, which is often identified
as esophageal cancer.46 Indeed, pancreatic cancer is
the most difficult type of carcinoma of unknown
primary to identify using our method as well as all
published methods.8,24,47–50

Additional research is needed to successfully
translate the 154-gene signature from gene expression
microarray to real-time reverse transcription poly-
merase chain reaction assays, thus allowing broader
access and utilization in the clinical setting. In routine
practice, most diagnostic materials are formalin-fixed
and paraffin-embedded; thus, it will be highly
interesting to assess the usefulness of the 154-gene
signature in formalin-fixed and paraffin-embedded
samples. Future translational research should focus
on the development and validation of the real-time
polymerase chain reaction-based gene expression test
using formalin-fixed and paraffin-embedded samples.

In conclusion, this study describes the development
and validation of a gene expression-based signature to
assist in the identification of the origin of tumor tissue.
We foresee its application in cases of poorly differ-
entiated or undifferentiated metastatic tumors and in
cases where histology alone fails to suggest a specific
primary site of origin. Further studies evaluating the
impact of gene expression-based test results on
therapy choice and treatment outcome for patients
with carcinoma of unknown primary are warranted.
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